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Analytic Geometry Formulas

1. Lines in two dimensions

Line forms
Slope - intercept form:
y=mx+b

Two point form:

Yo 7Y
y=y="—"r(x-x)
Xy =X

Point slope form:
y=y=m(x=-x)
Intercept form

24221 (a.b#0)
a b

Normal form:
X-coso+ysinc=p
Parametric form:
X=x +icosx

y=y +tsinx

Point direction form:
TH_YTH

A B

where (A,B) is the direction of the line and F(x,, y,) lies
on the line.

General form:

A-x+B-y+C=0 A#0 orB+#0

Distance
The distance from Ax+By+C =0 to F(x,,y,) is
d:|A-xl+B-yl+C
VA* + B’

Concurrent lines
Three lines
Ax + By +C =0
Ax+By+C, =0
Ax+ By +C, =0
are concurrent if and only if:
A B C
A, B, G|=0
A3 B3 C3

Line segment

A line segment B P, can be represented in parametric
form by

x=x+(x,—x)t
y=y+(y-n)
0<r<l1

Two line segments B P, and PP, intersect if any only if
the numbers

=X o= ) X=X Yi— W

B TA YTy BT Y3 Yy
s = and t=

Xo=X Yo=Y =X Vo™ N

X3 =Xy Y3y X3 =Xy V3™V,

satisfy 0< s <1 and 0<t<1

2. Triangles in two dimensions

Area
The area of the triangle formed by the three lines:
Ax+By+C =0
Ax+B,y+C, =0
Ax+By+C,=0

is given by
Al Bl Cl ’
AZ B2 C2
K = AS B3 C3
2'Al BI'A2 BQ'A3 B,
A, B, |A, By| |A B

The area of a triangle whose vertices are B (x,,y,),

B (x,,y,) and (x5, y5):

lxl y o1
K=—|x 1
52 Vs
Xy 1
K:lxz_xl yz_yl.
AR N



Centroid

The centroid of a triangle whose vertices are P (x;,y,),

B (x,,y,) and (x5, y;) :

X +x,+x y1+y2+y3
(x’ ): 1 2 3’
Y 3 3

Incenter

The incenter of a triangle whose vertices are P (x;,y,).,

P (x,,y,) and Py(x;, y3)

ax, +bx, +cx; ay, +by, +cy,
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(x,y)=(

a+b+c a+b+c

where a is the length of PP,
and c is the length of AP,.

Circumcenter

The circumcenter
F(x,y), B(x,,y,) and P(x;, y;):

J

b is the length of AP,

of a triangle whose vertices are

x12 + y12 w1 |x x12 + y12 1
xzz + yzz » 1 x xzz + yzz 1
x32 + y32 yi A x x32 + y32 1
(x,y)= :
v o 1 v o 1
2lx, y, 1 2lx, y, 1
Xy 1 X,y 1
Orthocenter
The orthocenter of a triangle whose vertices are
B(x,y), By(x,,y,) and P(x;, y3):
Yo XX+ y12 1 x12 +yy X1
Yy XX F y22 1 xzz vy ox 1
Y3 XX+ y32 1 x32 tyy, X o1
(x, )= :
v o 1 S |
2lx, y, 1 2lx, y, 1
X,y 1 oy 1

3. Circle

Equation of a circle

In an x-y coordinate system, the circle with centre (a, b)
and radius r is the set of all points (x, y) such that:

(v=a) +(y-5)’ =72

Circle is centred at the origin

24yt =2

Parametric equations
xX=a+rcost

y=b+rsint
where t is a parametric variable.

In polar coordinates the equation of a circle is:

2 2

r? =2rr, cos(0-@)+1,> =a

Area

A= r27r
Circumference

c=rw-d=2m-r

Theoremes:

(Chord theorem)

The chord theorem states that if two chords, CD and EF,
intersect at G, then:

CD-DG =EG-FG
(Tangent-secant theorem)

If a tangent from an external point D meets the circle at
C and a secant from the external point D meets the circle
at G and E respectively, then

DC? =DG - DE
(Secant - secant theorem)

If two secants, DG and DE, also cut the circle at H and F
respectively, then:

DH - DG = DF - DE
(Tangent chord property)

The angle between a tangent and chord is equal to the
subtended angle on the opposite side of the chord.
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4. Conic Sections
The Parabola

The set of all points in the plane whose distances from a
fixed point, called the focus, and a fixed line, called the
directrix, are always equal.

The standard formula of a parabola:
Y =2px
Parametric equations of the parabola:
x=2pt’
y=2pt
Tangent line
Tangent line in a point D(x,,, y, ) of a parabola y* = 2 px

Yoy =p(x+x)
Tangent line with a given slope (m)

y=mx+L

2m
Tangent lines from a given point

Take a fixed point P(x,,y,).The equations of the
tangent lines are

y_y():ml(
y_yo:mz(x

2
+4/Y, —2px
m =2 Yo poand

1

x—x,) and
%)

X, ) where

2x,
m = Yo+ yo2 —2px,
' 2x,
The Ellipse

The set of all points in the plane, the sum of whose
distances from two fixed points, called the foci, is a
constant.

The standard formula of a ellipse
+—==1
a’> b

Parametric equations of the ellipse

2 2
XY
2

X =acost
y=bsint
Tangent line in a point D(x,, y,) of a ellipse:

XoX | VoY
4+ =]
at b

Eccentricity:

Ja* -b?

a

Foci:
if a>b=>F (—a’—b*,0) F,(\a>-b*,0)
if a<b=>F,(0,~\b* —a®) F,(0,Nb* —a*)

Area:
K=m-a-b

The Hyperbola

The set of all points in the plane, the difference of whose
distances from two fixed points, called the foci, remains
constant.

The standard formula of a hyperbola:

2 2

Xy

——-—=1

a> b’

Parametric equations of the Hyperbola
a

xX=—

sint
_ bsint

cost

Tangent line in a point D(x,, ¥,) of a hyperbola:

%X VoY _y
a’ b’
Foci:

if a>b=>F,(—a*+b*,0) F,(\a*+b*,0)
if a<b=>F,(0,~\b*+a*) F,(0,Nb* +a*)

Asymptotes:

ifa>b=>y=2xandy=—éx
a a

a a
ifa<b=>y=—xand y=——x
if y=y y==y
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5. Planes in three dimensions
Plane forms
Point direction form:

X=X _ Y= _27%

a b c

where P1(x1,y1,z1) lies in the plane, and the direction
(a,b,c) is normal to the plane.

General form:
Ax+By+Cz+ D=0
where direction (A,B,C) is normal to the plane.

Intercept form:
ﬁ + l + E =1
a b c

this plane passes through the points (a,0,0), (0,b,0), and
(0,0,¢).

Three point form

X—=X3 Y=Y; 7%
X=X Y —Y; 3—%=0
Xo =X Yo7V 2T

Normal form:

xcosa+ycos f+zcosy=p
Parametric form:

X=X +as+a,t

y=y +bs+b,t

=7t s+t

where the directions (al,b1,c1) and (a2,b2,c2) are
parallel to the plane.

Angle between two planes:
The angle between two planes:
Ax+By+Cz+D =0
Ax+B,y+C,z+D, =0
is
AA +BB,+CC,
JAZ +B2+C2 A} + B, +C)
The planes are parallel if and only if
Al _ Bl _ Cl
A B G
The planes are perpendicular if and only if
AA,+BB,+CC,=0

arccos

Equation of a plane

The equation of a plane through P+(x1,y1,2z1) and parallel
to directions (a4,by,c1) and (az,by,c2) has equation

y—n
a, b,

x_xl Z_Zl
q |=0
a, b, (%)

The equation of a plane through Pi(x4,y1,2z1) and
P2(x2,y¥2,22), and parallel to direction (a,b,c), has equation

X=X Y=y 22—z
X, =X Y=y Z,—4|=0
a b c
Distance

The distance of P1(x1,y1,z1) from the plane Ax + By +
Cz+D=0is

J= Ax, + By, +Cz
JA*+B*+C?
Intersection

The intersection of two planes
Ax+By+Cz+D, =0,
Ax+B,y+C,z+ D, =0,

is the line
X=X _ V=W _27%
a b c
where
Bl Cl
a:
BZ C2
C A
b: 1 1
G, A
Al Bl
C:
AZ B2
Dl Cl Dl Bl
b —-c
D2 C2 D2 B2
x =
! a’ +b* +¢?
Dl Al Dl Cl
c —-c
_ D, A, D, C,
N a® +b* +¢?
Dl Bl Dl Al
a -b
D2 B2 D2 AZ
Z =
! a’ +b* +¢?

If a=b =c =0, then the planes are parallel.



